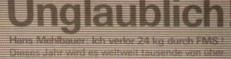


Universität Dortmund


Informationen für Anwender der Informationstechnik 🗦 14. Jahrgang, Nr. 1 🕆 März 2004

In dieser Ausgabe: Focus Award 2003 Seite 1 Automobilbau- Rechnerplattformen Seite 3 Verschiedenes Seite 4 Benutzergruppen Seite 5 Transiente Simulation linearer elektrischer Maschinen Seite 6 UniDoNet-Ausbau Seite 7 **Tipps und Tricks** Seite 8 Dosenfleisch Seite 9 Automatischer Update des Virenscanners Sophos Seite 10 Mal woanders rechnen ... Seite 12 Wir werden niemals auseinander geh'n ... Seite 14 inforum: das UniDo-MID-Portal Seite 16 Seite 18 eCompetence-Initiative Hotspots (2) Seite 19 Glosse Seite 20 Statistiken 2003 Beilage

2	B	1	F	F	3	5	C	5	В	1	F	9	
D	3	9	4	E	В	В	3	E	1	2	0	8	
A	8	D	8	P	4	1	2	0	2	A	D	<u>, 1</u>	
3	б	1	2	6	C	8	0	A	6	A	Aá	on	
2	В	3	A	B	D	7	8	C	a	C	igei	iert 1t-	
A	7	В	B	F	F	D	7	2	B	Su	per.	")	
6	6	0	В	2	C	9	F	A	6	ocy.	CISC		
8	1	D	0	A	C	В	8	HUBBUR	eson				
2	7	6	1	A	2	2	E	1000			iber ltun	Pres- g zu	
2	F	3	E	В	F	Iternetpräsenz. Das ge- ehrgeizigstes Projekt.							
E		2	2 4 1 6 2, Professoren und Studen-										
4	7	7	7 0 9 Ser verschiedene Aspekte von In den abendlichen Vorträgen										
2	В	9 C 2 Wort genauso wie Historiker und albiologe referierte über seine Be-											
0	4	1 F 3 cm. Ein Werbefilmproduzent tat es											
7	e tatsächlich nicht in Dortmund wei-												
	oen. Denn die Live-Übertragung dieser ne via Internet war der Grund für eine												
B	und erfolgreiche Kooperation zwischen												
2	2												
	e Dortmund.												
1	rend des Symposiums neben der feierlichen Erträge erfolgreich und in voller Länge gestreamt												
n	rt	rage	erfo	igre	ich u	nd i	n vo	Her I	Lang	e ge	strea	mt	

Focus Award 2003 estival Ausstellung Symposium Film Seminar Werkstatt 7. bis 15. November

www.bilderkriege.de

he Realisierung oblag dabei fast ausschließlich unperationspartnern: Der Offene Kanal Dortmund stellte

ohne zu hungern ohne Pillen ohne Gymnastik

common Sup mit oder ohne Voranmeldung zu eine

Transiente Simulation linearer elektrischer Maschinen

In diesem Artikel wird die Methode zur Berechnung linearer Elektrischer Maschinen am Beispiel des Transrapid beschrieben.

Modellierung und Simulation Elektrischer Maschinen

Die Simulation elektrischer Maschinen passiert in mehreren Schritten. Im ersten Schritt erfolgt nach der bottom up- oder top down-Methode die Erstellung des Finite Elemente Modells bestehend aus Komponenten, Flächen, Linien und Punkten unter Berücksichtigung der physikalischen Eigenschaften der verwandten Werkstoffe Luft, Stahl, Aluminium oder Kupfer. Im nächsten Schritt erfolgt die Vermaschung des Modells, wobei berücksichtigt wird, dass die maximale magnetische Energie im Luftspaltbereich vorzufinden ist, indem die Vermaschung im Luftspaltbereich sehr fein und im Übergang zum Stahlmaterial vergröbert wird, um die Rechengenauigkeit bei niedrigen Rechenzeiten hoch zu halten. Abgeschlossen wird der Modellierungs-

prozess durch Berücksichtigung der Randbedingungen an den Grenzen des Finite Elemente Modells und der Einarbeitung der elektrischen Lasten, wie z.B. Spannungen oder Strömen. Nach diesem Schritt können statische und im Falle von Wechsel- und Drehstrommaschinen harmonische Berechnungen erfolgen.

Sehr einfach kann die Modellerstellung bei Zuhilfenahme eines benutzerfreundlichen Menüs erfolgen. Großer Nachteil dieser Vorgehensweise ist die nur schwer bis kaum mögliche Änderung von geometrischen Größen des Modells. Ein weiterer Nachteil dieser Vorgehensweise besteht darin, dass insbesondere bewegte technische Anordnungen (transiente Berechnungen) nur in absoluten Ausnahmefällen berechnet werden können. Abhilfe bringt die Verfügbarkeit einer Makrosprache, mit Hilfe derer auf der Basis von geometrischen,

elektromagnetischen und Maschinen-Parametern und standardisierten

Maschinenmodellen mit bekannten Nut-, Pol- und Magnetformen in kürzester Zeit Finite Elemente Modelle erzeugt und ge- ändert werden können. Um bewegte Anordnungen rechnen zu können, ist zudem ein adaptives Netz an den gleitenden Stator- und Rotorgrenzen im Luftspalt erforderlich, um in Abhängigkeit der linearen Bewegung bei Linearmotoren oder Drehung bei runden Maschinen für jede einzelne Stator-Rotor-Position eine

Bericht über eine Anwendung des Finite-Elemente-Programms Ansys

ses in Ansys integrierte Modul, das mit Makros und Menü speziell für rotierende Maschinen geschaffen wurde, heißt EM-Design und wurde in den letzten zwei Jahren um weitere Features erweitert. In den folgenden beiden Kapiteln wird die Simulation der beiden Maschinentypen Langstator-Synchronlinearmotor und kommutierte Gleichstrommaschine in 2D mit Ansys beschrieben.

Der Langstator-Synchron-Linearmotor

Bild 1: Modell des Transrapid

Kopplung zwischen Stator und Rotor zu schaffen. Ansys als am meisten verbreitetes Multipurpose-Finite-Elemente-Programm bietet eine außerordentlich umfangreiche Makrosprache, die für die im folgenden dargestellten Beispiele eines Langstator-Synchron-Linearmotors und einer kommutierten Gleichstrommaschine zur Anwendung kam. Im Falle von rotierenden Elektrischen Maschinen, also auch der kommutierten Gleichstrommaschine, wurde die Anwendung der Makrosprache um ein maschinenspezifisches Menü innerhalb von Ansys erweitert, um den Anwender sowohl in der Modellerstellung und Maschinenberechnung optimal zu unterstützen. Die-

computer-Postille 14. Jahrgang – Nr. 1 Synchrone Linearmotoren werden angewandt, um direkt ohne Getriebe und Rad/Schienekopplung eine lineare Bewegung eines Systems zu erzielen. Bei niedrigen Geschwindigkeiten ist eine Anwendung für die Öffnung von Toren und Türen denkbar, für hohe Geschwindigkeiten wurde die Anwendung als Personentransportsystem TRANSRAPID bis zur Marktreife erreicht.

Das Finite-Elemente-Modell wird wie oben beschrieben mit der Ansys-Makro-Technik mit Parametern und

oben beschrieben mit der Ansys-Makro-Technik mit Parametern und Unterprogrammtechnik erstellt. Die gleitende Kopplung zwischen Stator und Rotor in Abhängigkeit der Position wird durch die automatische Suche eines Statorknotens auf der Statorluftspaltkante mit kleinstem Abstand zum jeweiligen Rotorknoten auf der Rotorluftspaltkante und anschließende Kopplung hergestellt. Hierbei ist zu beachten, dass bei stillstehendem Rotor der Stator aus dem Rotor herausgleitet und bei entsprechend großer Verschiebung um eine Rotorlänge real oder zur Erzeugung der Kopplung virtuell verschoben wird. Im Gegensatz zu ganzen runden Maschinen müssen zudem die vertikalen Enden des Linearmotors mit periodischen Randbedingungen versehen werden.

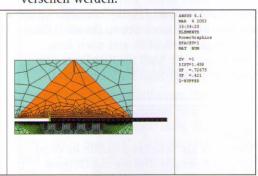


Bild 2: Finite-Elemente-Modell eines Langstator-Synchron-Linearmotors mit gleitendem Interface zwischen Stator und Rotor

Mit diesem Finite-Elemente-Modell können bei direkter Vorgabe von Strömen in den Stator- und Rotorspulen direkt Feldberechnungen erfolgen, um die magnetische Auslastung der Stator- und Rotorbleche in Abhängigkeit variabler Belastung zu ermitteln. Diese Berechnung kann sowohl linear als auch nichtlinear bei Vorgabe der B-H-Kurve des jeweiligen Materials vorgegeben werden. Um die induzierte Spannung infolge der

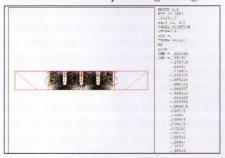
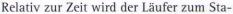



Bild 3: Feldlinienbild im Stator des Synchronlinearmotors bei Speisung der Erregerspulen

linearen Bewegung im Leerlauf oder den Linearmotor unter Last bei variablem Lastwinkel berechnen zu können, muss das Finite-Elemente-Modell um eine Verschaltung der Stator- und Rotorspulen erweitert werden. Die Spulen- oder Stabersatzelemente, welche direkten Bezug zum bestehenden Finite-Elemente-Modell haben, sowie Widerstände, Induktivitäten, Kondensatoren, Stromund Spannungsquellen sind Standard-Schaltungselemente innerhalb von Ansys, die unter Anwendung der Makrotechnik automatisch zur spezifischen Schaltung des Stators und Rotors zusammengefügt werden.

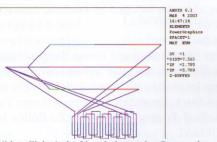


Bild 4: Elektrische Verschaltung des Stators des Langstator-Synchron-Linearmotors, bestehend aus Spulenseiten, Widerständen, Induktivitäten und Spannungsquellen der drei Stränge zur Stern-Serien-Schaltung

torbewegt, wobei die Verbindung zwischen Stator und Läufer mit einem "sliding"-Interface versehen wird. Nach jedem Simulationsschritt ändert sich die Zeit und damit die Stellung im Zeitschrittverfahren transient. Daraus folgend werden die Kopplungen für jeden Zeitschritt gelöst und wieder neu aufgebaut.

Um den Linearmotor mit Bezug des Pol-

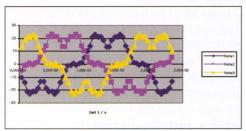


Bild 5: Induzierte Spannung in den drei Phasen des Stators infolge der Speisung der Erregerspulen und der Bewegung zwischen Stator und Rotor

radwinkels zwischen Stator und Rotor unter Last zu rechnen, muss der Motor zunächst von 0 zur Synchrongeschwindigkeit beschleunigt werden. Um eine schnelle Beschleunigtung zu erzielen, muss die Amplitude der Ständerspannung entsprechend der U/f-Kennlinie erhöht werden. Darüber hinaus ist eine sehr langsame Erhöhung der Frequenz bei Annäherung an die Arbeitsfrequenz zu gewährleisten. Dieser Konvergenzprozess

computer-Postille März 2004 benötigt ca. 2000 Zeitschritte. Nach Erreichung der Konsequenz können

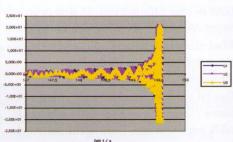


Bild 6: Spannung in den drei Phasen im Einschwingvorgang folgend der U/f-Kennlinie bei steigender Geschwindigkeit

in Abhängigkeit der Zeit, Frequenz und der Stellung zwischen Stator und Läufer Ströme, Leistungen, Hub- und Schubkräfte und andere elektromagnetische Größen berechnet werden. Während die statische Simulation einer Synchron-Linearmaschine in kürzester

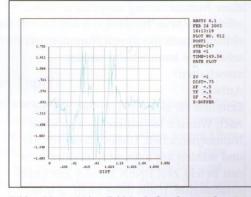


Bild 7: Magnetisches Feld im Luftspalt unter Last bei 30 Grad Polradwinkel im Motorbetrieb

Zeit erfolgen kann, sind für Lastberechnungen mehrere Stunden bis Tage erforderlich. Diese Berechnungsmethode wurde zur prinzipiellen Auslegung eines Transrapid-Modells im Maßstab 1:20 verwendet und wird in Folgearbeiten für die Optimierung des Transrapid und von Varianten des Transrapid (Asynchron-Linearmotor mit Schleifringläufer und Wirbelstromläufer) zur Anwendung kommen.

Bernd Aschendorf